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Executive Summary 
In response to the significant growth of freight movement in recent years, transportation 
agencies are increasingly aware of the need for detailed information on truck flows within 
highway network systems for traffic monitoring and operations, freight demand analysis and 
environmental impact studies. However, the limited availability of truck data sources 
complicates the capture of truck travel patterns which significantly vary by season, time of day 
and location. This study introduces an anonymous truck tracking method over a complex 
network system leveraging existing traffic detection infrastructure, namely inductive loop 
detectors (ILDs). The tracking model identifies individual trucks at detector locations using 
advanced inductive signatures and matches vehicle pairs at detector locations.  Several vehicle 
feature selection and weighting methods including Self Organizing Map and K-means clustering 
were applied to better identify individual vehicles from signature data.  It was shown that the 
proposed extensive feature processing enhanced vehicle identification performance even 
among vehicle pools sharing similar physical configurations. An extended form of the Bayesian 
classification model was applied to estimate matching and non-matching probabilities of the 
vehicle pairs.  The developed model was tested along an approximately 5.5-mile freeway 
segment on I-5 and CA-78 in San Diego, California where only 67 percent of the total trucks 
were observed at both up- and down-stream detector sites.  Results showed balanced 
performances in exactness and completeness of matching with 91 percent of correct outcomes 
for multi-unit trucks. As a case study, the tracking algorithm was implemented over a larger 
network system with six detector locations and showed that the algorithm was able to capture 
the route choice patterns of different truck types. These results indicate that the network-wide 
tracking model can facilitate further understanding of spatial and temporal truck flow patterns, 
which are of importance in freight transportation analyses and planning.   
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Introduction 
According to a national freight strategic plan (NFSP) (1), the U.S. population is expected to 
increase 321 million in 2015 to 389 million by 2045, with economic growth doubling in size.  
Consequently, freight movement is expected to increase approximately 42 percent by 2040, 
which is equivalent to an average of 1.3 percent increase per year.  Among various modes in 
freight transportation, trucks show the largest expected increase in flows by 2040 since they 
handle the most ton-miles in the US. Specifically, 70 percent and 64 percent of the tonnage and 
value, respectively, of goods are shipped by trucks (1).  Increasing freight demand will 
consequently yield substantial impacts on road networks.  The NFSP (1) reported that assuming 
no capacity changes, truck and passenger vehicle traffic will increase recurring peak-period 
congestion by 34 percent in 2040, compared to 10 percent in 2011.  Hence, freight 
transportation agencies need effective policies and regulations to successfully operate existing 
highway systems and reduce negative impacts from trucks such as greenhouse gas emissions, 
pavement maintenance, and noise.  Along this vein, the most recent surface transportation 
authorization act, the Moving Ahead for Progress in the 21st Century Act (MAP-21) (2), was 
enacted in 2012 with an establishment of the national freight policy (NFP) (1) that aims to 
maintain competitiveness and efficiency of the freight transportation system.  The main 
objectives of these programs include: i) reducing congestion and improving performance of the 
freight transportation, ii) identifying and monitoring major freight corridors to facilitate freight 
flows, and iii) developing data collection and analytic tools for freight modeling to allow public 
and private sectors to better assist in the decision-making process.   

A number of researchers have pointed out that more efficient data collection methods and 
planning strategies are needed for more accurate truck movement estimations (3, 4).  One of 
the unique travel patterns of truck traffic compared to general traffic is that the truck flow 
significantly varies by location and time.  Typically, passenger cars and local service trucks show 
heavy traffic during the morning and afternoon peak hours in weekdays. On the other hand, 
through (i.e., passing) trucks show constant traffic throughout during 24 hours, seven days a 
week (1, 3, 5). Moreover, truck travel patterns closely link to service industry and commodity 
types that trucks are associated with (6, 7). For example, truck volumes observed in urban areas 
are likely constant for weekdays and weekends as they mainly perform localized service. 
However, truck volumes near port areas are much higher during weekdays than weekends 
because ports often do not operate on weekends.  Therefore, when estimating and collecting 
truck flows, it would be important to consider their travel behaviors because volume or travel 
pattern of sample truck populations may not represent the total population, which would 
eventually result in inadequate restrictions of freight corridors and facilities, or displacements 
of freight activities (1).   

However, due to a lack of data availability, there have been difficulties in understanding truck 
travel patterns. The main sources of truck data are either truck surveys conducted for limited 
durations in particular seasons or truck counts at permanent detection facilities such as 
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automated count stations and weigh-in-motion (WIM) sites, or temporary installed active 
sensors.  Specifically, surveys such as the national vehicle inventory and use survey (VIUS) (8), 
or State level intercept surveys, provide detailed information on truck type, Origin-Destination 
(OD), weight and VMT throughout the US or by State. However, the surveys typically obtain 
partial data from sampled populations as representative pools. Therefore, if survey sampling is 
biased or inaccurate responses are collected, survey outcomes may not represent the total 
population, as assumed. In addition, surveys tend to be implemented for a limited period of 
time, therefore the outcomes may not reflect seasonality in truck flows. To complement such 
survey approaches, passive sensor technologies such as WIM or inductive loop detectors (ILDs) 
have been widely used. Since such detection systems already typically installed along truck 
corridors in the U.S., and are capable of providing temporally continuous data, the full 
measures of truck volumes can be obtained by this technology. However, since the detection 
systems only provide point observations such as volume and occupancy, additional modeling 
efforts are required to obtain path flows or travel time estimations.  Recently, active sensors 
technologies such as Automatic Vehicle Identification (AVI), Global Positioning System (GPS), 
and Bluetooth have been used to provide vehicle flow data. Since these sensors capture 
vehicles at multiple locations and match them with their unique IDs, vehicle flow and travel 
time can be obtained directly from the sensors. However, this data collection method requires 
sensor installments in vehicles and the network to collect vehicle ID information.  Besides these 
additional installation efforts, data collection may cause temporal and spatial sampling biasness 
because only sampled populations registered as probe vehicles provide the information.  

Hence, this study developed a methodology to accurately estimate network-wide truck flows by 
leveraging existing point detection infrastructure. Recently published work by the authors (6) 
proposed a framework for tracking truck flows at a link level utilizing WIM systems.  Defined as 
vehicle tracking or re-identification, vehicles detected at passive detectors are matched 
between detection locations using data features from the detection systems. Compared to the 
current data sources that provide truck flow data, the tracking approach is advantageous for 
measuring spatial and temporal variations in truck flows because the total volumes of trucks 
are temporally continuously tracked and monitored along the truck corridors.  This is an 
improvement over the prior link-based tracking approach, which had several limitations in 
capturing dynamic truck activity in a complex road network.  Since the tracking was focused on 
matching vehicles between sparsely located WIM stations at the corridor level, actual 
implementation of the tracking would not be effective at a smaller scale such as capturing 
complex travel behavior of trucks within a city. In addition, since distance between adjacent 
WIM sites vary significantly, tracking accuracies may be compromised along corridors where 
the distance between WIM sites is large (9).  

Considering the long travel distance of many freight trucks, tracking should be accomplished 
over a complex network even across different freeways. Hence, this study developed a 
network-wide tracking approach solely based on ILD systems, which is the most prevalent 
detection system in the US.  The dense and widespread installation of these sensors ensure that 
spatial and temporal variations of truck activity can be recorded by detectors and used for the 
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network-wide tracking framework.  Therefore, this study expects to facilitate understanding of 
spatial and temporal truck flow pattern over a large network and provide valuable insights for 
policy makers and planning agencies to identify primary truck routes and to estimate path flows 
of trucks along different truck corridors. As an illustration, an application of truck route choice 
behavior by truck type is presented in this report. 

Literature Review 

General Vehicle Tracking Studies 

The concept of vehicle re-identification or tracking was first introduced in late 1980s with 
primary focus on general traffic. As ILDs have been the most prevalent detection systems in the 
US, waveform signatures from the ILD have been commonly utilized in anonymous vehicle 
tracking studies. Bohnke and Pfannerstil (10) first introduced the use of inductive waveforms to 
re-identify vehicle sequences.  Kuhne (11) followed by developing a freeway vehicle re-
identification technique using dynamic traffic flow models.  Sun et al. (12) proposed a multi-
objective optimization approach to formulate vehicle re-identification problem using inductive 
loop signatures on a 1.2-mile freeway section. Oh and Ritchie (13) developed an anonymous 
vehicle tracking algorithm focusing on passenger vehicles at signalized intersections using 
probabilistic pattern recognizer.  Tawfik et al. (14) adapted the lexicographic methods 
developed by Sun et al. (12) with a heuristic decision tree algorithm and showed 89 percent 
accuracy.  Jeng et al., (15) developed a real-time vehicle re-identification algorithm with 
different loops configurations and showed the matching accuracies ranging from 50.7 to 54.2 
percent by detector configurations.  Abdulhai and Tabib (16) identified a new distance measure 
to improve accuracy of re-identification algorithm including conventional statistical measures 
(i.e., Euclidean, Correlation, Lebesgue, First derivative, MSE, and FFT) and neural network (i.e., 
back propagation neural network, time delay neural network and probabilistic neural network).   
The result selected the neural network as the best distance measure with 56% accuracy.  
Coifman and Krishnamurthy (17) used individual occupancy measures as vehicle features.  
Based on loop occupancy, long vehicles were identified as distinct vehicles to track arrival 
sequence, which showed about 40% of long vehicles re-identified. 

As all the passenger vehicles have two axles with similar metallic compositions, the previous 
vehicle tracking studies could only be performed along short distance (i.e., approximately 1 
mile) focusing on performance measure such as a travel time estimation, rather total flow 
estimation.  Travel time estimation requires simpler vehicle matching algorithm than total flow 
estimation because only a portion of vehicles needs to be successfully tracked.  In other words, 
only a portion of vehicles, which are distinct in its feature thus have higher chance to be 
correctly matched, could be used for the tracking. 
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Truck Tracking Studies 

For truck tracking, Cetin et al. (9, 18) and Jeng and Chu (19) developed a long-distance truck 
tracking algorithm. Cetin et al. (18) used WIM data to track long distance truck traffic over 100 
miles in Oregon and Cetin et al. (9) extended the original work to multiple locations with 
different corridors.  These studies applied a Bayesian approach using two-step algorithms 
where the first step finds matched vehicle pairs while the second step screens out false 
matches using the posterior probability from the Bayesian model. Jeng and Chu (19) utilized 
inductive loop signatures and WIM for truck tracking.  Specifically, the inductive loop signatures 
were the main source to match vehicles and the WIM data were subsequently used to filter out 
mismatching vehicles.  Vehicles were matched based on proximity measures such that a vehicle 
pair with the minimum distance between signatures obtained at up- and down-stream stations 
was selected as the matching pair. Hyun et al. (6) recently applied a Bayesian approach with 
extensive feature selection and weighting techniques using WIM and loop signatures. Results 
showed that tracking was successful when features from WIM and signatures are 
simultaneously utilized for tracking. Overall, over 80 percent of tracking accuracy was shown on 
26-mile freeway corridor in Southern California. 

Background of Inductive Loop Detector Systems  
As the predominant detection system in the US, ILDs are one of the most common data sources 
in various applications in transportation analysis such as traffic operation and monitoring, 
planning, safety, and environmental studies. In California, ILD measures such as vehicle volume, 
occupancy, and estimated instantaneous speed are publicly open through the Performance 
Measurement System (PeMS) (20) for over 25,000 ILDs on highway mainlines, ramps, and local 
arterials.  

A conventional presence loop detector detects a presence of vehicle in a bivalent mode with 
zero or one pulses.  However, an advanced ILD – which simply replaces the conventional ILD 
card in the traffic cabinet – has the capability to generate inductive waveforms signatures for 
individual vehicles.  The advanced ILDs records disturbances to the inductance field caused by 
the metallic composition of a vehicle as a waveform signature at up to 1200 samples per 
second.  With high sampling rates, detailed vehicle types and body configurations can be 
identified from inductive signatures using advanced models while the conventional binary 
output can only measure vehicle presence (21).  Since advanced ILD systems do not require 
modifications to existing in-pavement sensors, they are a sustainable and cost-effective method 
for collecting and distinguishing individual truck observations. 

Methodology 
The tracking process comprises seven main steps as shown in Figure 1.  When a vehicle (i.e., 
target) is detected at a downstream location, an algorithm aims to match the vehicle at a 
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corresponding upstream location or to declare that the vehicle did not pass the upstream 
location.  As the upstream candidate sets examined for every target vehicle can get 
impractically large, the first and second steps of the algorithm focus on effectively narrowing 
down potential candidates prior to the matching process.  Then, the signature features are 
processed to enable waveform data to be better utilized to distinguish vehicles even those in 
similar signature patterns.  The final vehicle tracking processes adopted the two-steps Bayesian 
algorithms from the previous study of corridor level tracking (6).  The algorithms perform two 
consecutive steps of best match selection and filtering where the best match selection finds the 
best candidate for each target by comparing matching probabilities to the all candidates.  The 
filtering determines whether the best candidate is indeed a true match or the if vehicle did not 
pass the upstream location.  The latter indicates that the vehicle entered the corridor midway 
through another ingress, and dd not arrive through the upstream location. 
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Figure 1 Flowchart of network-wide tracking model. 

Truck Detection Algorithm 

Since the ILD has no capability of classifying vehicles, a truck detection algorithm was applied to 
categorize trucks into two groups (i.e., Single-units and Multi-units) and to exclude passenger 
vehicles from the tracking process.  The truck detection algorithm is based on Gaussian Mixture 
(GM) model that linearly composes multiple (𝑚) Gaussian distributions, 𝑁(𝜇𝑚 , 𝛴𝑚) with a 
mixing proportion of  𝑝𝑚 (22).   Hyun et al., (23) presented a binary GM model for distinguishing 
trucks from non-trucks using ILD data.  Specifically, the binary model focuses on differences in 
duration over the loop by vehicle type.  This study applied three duration distributions for 
passenger vehicles, Single-unit trucks and Multi-unit trucks using tri-modal GM distributions.  
Simply, the algorithm captures the differences in length of stay over a loop, which depends on 
length of vehicle.  Details on truck detection algorithm refer to Hyun et al. (23). 

𝑓(𝑥) =  ∑𝑀
𝑚=1  𝑝𝑚 ∙ 𝑁(𝑥; 𝜇𝑚 , 𝛴𝑚) (eq. 1) 

where 𝑚 is number of mixture components, 𝑁(𝜇𝑚 , 𝛴𝑚) is a Gaussian distribution with mean 𝜇 
and covariance matrix 𝛴, and 𝑝𝑚 is the mixing proportion. 

The GM model was tested with the tracking population including passenger vehicles and 
showed 99 percent, 75 percent, and 95 percent of Correct Classification Rate (CCR) for 
passenger vehicle, single-unit truck, and multi-unit truck, respectively.  While passenger 
vehicles and multi-unit trucks showed high classification rates, approximately 19 percent of 
single-unit trucks were classified as passenger vehicles. This is because trucks with short body 
length such as utility and service trucks show similar duration of longer passenger vehicles like 
pick-up trucks. 

Search Space Identification 

Once a target is identified at a downstream, the tracking algorithm searches potential 
candidates at upstream locations using minimum and maximum travel time. The minimum 
travel time is estimated based on the speed limit.  In order to consider truck travel behavior of 
slow speed with multiple stops for rest break, the search space should not be constrained from 
narrow temporal window.  In this study, maximum travel time is defined as a relaxed threshold, 
for example three times of the minimum travel time.  However, this relaxed search space may 
significantly increase the candidate vehicles especially on a heavy traffic corridor, and 
consequently burden to the tracking process to identify the exact match.  On the other hand, 
the increased number of vehicles more likely contains a matching vehicle in the candidate pool, 
therefore the tracking performance would be eventually higher if proper matching and filtering 
processes are followed.  

{𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑡𝑡𝑓𝑓 ) ≤ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤 < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑒. 𝑔. , 𝛼𝑡𝑠 ∗

𝑡𝑡𝑓𝑓  )}  (eq. 2)  
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where 𝛼𝑡𝑠 can be any value greater than 1 and this study uses three 

Signature Transformation 

A signature waveform is a representation of a vehicle metallic shape.  Ideally, signatures from 
the same vehicle would be identical regardless of the detected locations.  However, multiple 
factors such as vehicle speed and vehicle’s lateral position on the loop, loop geometry, and 
sensor calibration and sensitivity may warp the signatures and produce different shapes by 
location even from the same vehicle. Therefore, this study applied a signature transformation 
step to minimize such effects prior to extracting the signature features for tracking.  The 
transformation step initiates with a normalization step that standardizes signatures with the 
same scale from zero to one for time and magnitude axis.  This normalization step allows the 
signature features to be extracted with the same scale and to remove particular impacts caused 
from different sensor calibration by detector locations. 

Although the signature normalization step is effective way to reduce different magnitude scales 
from the loop geometry and sensor calibration, there are still a number of factors that could 
affect signature shapes, for instance, sensor sensitivity, vehicle’s lateral position, and vehicle 
acceleration or deceleration on the loop.   However, it is assumed that the signatures from the 
same vehicle would have similar waveform patterns as well as distinct signature structures such 
as peak location and relative magnitudes of the peaks although not every part of the signature 
could be exactly identical.  In this regard, the previous study (6) developed a heuristic algorithm 
that transforms signatures to minimize distances between signatures from the same vehicle.  
The algorithm transforms the candidate signature to fit the target signature along a horizontal 
(i.e., time) axis by linearly shifting and stretching the signature.   

However, since the approach only focuses on the horizontal transformation, distortions in 
magnitude, which are caused by loop sensitivity and vehicle speed, were not successfully 
corrected.  Since the distances between signatures are used as vehicle features, large 
magnitude differences even from few points could significantly decrease the matching 
probability.  Therefore, in this paper, vertical transformation is introduced along with the 
horizontal fitting as follows. 

Horizontal transformation (shift and stretch) 

𝑆𝑖
𝑠ℎ𝑖𝑓𝑡

 (𝑡) = 𝑆𝑖
𝑠ℎ𝑖𝑓𝑡

(𝑡) + 𝛽𝑠ℎ𝑖𝑓𝑡             [ 𝑒. 𝑔. , −0.20 ≤ 𝛽𝑠ℎ𝑖𝑓𝑡  ≤  0.20]  (eq. 2) 

𝑆𝑖
𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑡) =   𝑆𝑠ℎ𝑖𝑓𝑡 (𝛽𝑠𝑡𝑟𝑒𝑡𝑐ℎ  ∙ 𝑡 )          [𝑒. 𝑔. , 0.8 ≤ 𝛽𝑠𝑡𝑟𝑒𝑡𝑐ℎ  ≤  1.2]  (eq. 3) 

Vertical transformation 

𝑆𝑖
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  (𝑡) = 𝑆𝑖

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑡) + 𝛽𝑠ℎ𝑖𝑓𝑡             [ 𝑒. 𝑔. , −0.20 ≤ 𝛽𝑠ℎ𝑖𝑓𝑡  ≤  0.20] (eq. 4) 
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where t represents time, 𝛽𝑠ℎ𝑖𝑓𝑡 and 𝛽𝑠𝑡𝑟𝑒𝑡𝑐ℎ  represent the shifting and stretching coefficient, 
respectively. 

These horizontal and vertical transformation steps are iteratively performed until the minimum 
difference between the signature pairs is obtained or the iteration is reached the maximum 
threshold.  Figure 2 illustrates candidate and target signatures from the same vehicle with 
horizontal and vertical transformation steps.  Although the overall shapes of original signatures 
are similar, the magnitude distances between candidate and target are huge especially the time 
between 0.5 to 1 second; however, the transformation steps closely fitted the candidate 
signature to the target and successfully reduced distance between two signatures. 

 

Figure 2 Horizontal and vertical signature transformation. 

Signature Clustering Approach 

One challenge in vehicle tracking is to select the exact match from several candidates that have 
the same vehicle type due to their similar signature waveforms.   Figure 3(a) compares 
signatures of four truck types in Multi-Unit FHWA class 9 (3S2) generated from three different 
trucks.  It is found that while the signatures between trailer types are distinguishable, the 

(a) Original signatures (b) Horizontally shifted

1st step

stretched

2nd step

(c) Horizontally stretched
(d) Vertically shifted

3rd step

shifted

shifted
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signatures within the same body configuration are much less distinct to each other.  Notably, 
three signatures from the tank show almost identical waveforms because the trailers have the 
most similar configuration and physical shape. In addition, the signatures from the dropped 
deck types, lowboy platform and automobile transport trucks, have similar pattern of high 
magnitude in a trailer part. Since the distance between dropped deck and loop sensor is close, 
the signatures show high magnitudes in those parts.   

An effort was extended to capture even small distinction in individual signature and found that 
most trucks tend to have unique devices or accessories such as a tire chain, a tool box or a 
particular metal frame. This study focused on capturing those small distinctions in a signature 
to distinguish individual vehicles.  Moreover, it was also empirically learned that different truck 
types have the particular objects at designated areas such as under the driver unit or rear part 
of trailer due to their physical configuration and loading/unloading characteristics.  Figure 3(b) 
depicts the randomly chosen fifty signatures of livestock and tank trailers.  Although the overall 
signature patterns from the same trailer types are very similar, there is a particular section that 
has more variations in individual signatures.  For example, all the signatures of the livestock 
trailers have high magnitudes from 0.5 to 1 second; however, the front part (up to 0.4 second) 
of the signatures showed larger variations in magnitude by trucks.  Similarly, the middle parts of 
the tank (between 0.3 to 0.8 second) highly vary by vehicle.  These parts are expected to have 
greater capability of identifying differences among vehicles and better distinguish matching 
vehicles based on their unique magnitude patterns. 
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(a) Individual signatures 

 

(b) Fifty randomly chosen signatures 

Figure 3 Comparison of (a) individual and (b) fifty signatures in the same body configuration. 

However, it should be noted that these features would be hardly noticeable if signatures from 
different type of trailers are compared altogether.  Therefore, this study developed a signature 
clustering model to group trucks with similar signature patterns using Self Organizing Map 
(SOM) algorithm, which is an unsupervised clustering method based on a neural network (24).  
Since this method is unsupervised approach where data are not labeled for modelling, 
signatures can be clustered by their overall patterns, not classified by any type of labels.  In this 
vein, the algorithm categorizes signature waveforms solely depending on their inherent shapes.  
Specifically, the SOM is consisted with two components of training and mapping.  The training 
step builds a map using given input data set and the mapping procedure clusters a new input 
vector based on the map.  The map contains several nodes that are connected to the input, not 
to each other.  All the nodes have topological positions and change their positions along with 
the neighbors’ positions. In other words, the nodes adapt themselves to the input and increase 
differences to the other vectors (i.e., unselected inputs) to form clusters. 

This study trained a SOM with a large dataset that contain varieties of signature patterns.  The 
data set includes 28,328 single and multi-unit trucks collected at four ILD sites in California (21).  
A total of 25 nodes are initially used for the map and K-means clustering (25) was used to find 
the optimal number of clusters.  Five clusters are selected as optimal as shown in Figure 4 for 
(a) Multi- and (b) Single-unit.  Each color in the figure represents a cluster and each node shows 
a representative signature pattern. For example, a total of 11 green nodes and one red node in 
Figure 4(a) represent a cluster 1 and cluster 3, respectively.  It is also visually confirmed that the 
nodes with the same color show similar signature shapes, as two nodes in cluster 5 of Multi-
unit show high magnitudes on the trailer part. 
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(a) Multi-unit unit Clusters   (b) Single-unit Clusters 

Figure 4 Clusters and signature patterns in (a) Multi-Unit and (b) Single Unit. 

Feature Selection 

Feature Extraction 

Signature feature vectors represent differences between the signature attributes of a target 
and a candidate vehicle, where the attributes include 50 normalized magnitude measurements 
obtained at evenly distributed points along the temporal axis of the inductive signature.  

𝑉𝑖𝑗
𝑙 = 𝑉𝑖

𝑙 − 𝑉𝑗
𝑙  (eq. 5) 

where i represents candidate, j represent target, and l represent signature magnitude (𝑙 ∈
{1, … 50}) 

Feature Distribution 

To apply Bayesian inference to the vehicle features, probability distributions of match and non-
match cases should be initially estimated for each feature.  This study applied the distributions 
from the previous corridor level tracking model (6) because the estimated feature distributions 
should be spatially and temporally transferable to the new dataset. The initial model 
determined the match and non-match based on the sum of Euclidean distance of fifty features 
and a visual validation from groundtruth process confirmed the matching outcome. The model 
found that the features were fitted to Gaussian distributions centered at zero for both of match 
and non-match cases (see Figure 5). This is because a feature represents the distance of vehicle 
attribute (i.e., signature magnitude) and the distance should be ideally zero for matching cases. 
Even non-match cases are centered at zero but show larger variance in distributions because 
incorrectly matched pairs were still initially matched due to their smallest total distance. 

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5 Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5
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The Chapter 4.4 confirmed that each signature cluster has different waveform patterns.  This 
implies that the clusters may have different important significant parts that have more abilities 
to differentiate vehicles. Therefore, the parametric density functions were estimated by cluster 
and the signature features that have more power to distinguish vehicles are selected and 
weighted by cluster.  Figure 5 shows examples of feature distributions for three clusters.  The 
first feature (i.e., feature #13) shows that the cluster 1 has larger variances for both match and 
non-match while the cluster 2 shows smaller variances for match. These differences ensure the 
assumption that the features have varying ability in distinguishing match and non-match by 
clusters.  In other words, the feature #13 has the most influence for the second cluster in 
distinguishing match and non-match because differences in probabilities of match and non-
match are the largest in this cluster.   

The feature weights were estimated and categorized into four labels – critical, signature, 
insignificant, and inverse – based on their importance in distinguishing match and non-match 
vehicle pairs in descending orders (6).  If match and non-match distributions are not statistically 
different, and the variance of match distribution is smaller than that of non-match, the feature 
is categorized as critical since it plays critical role in distinguishing two distributions.  On the 
other hand, a feature’s match and non-match distributions are statistically the same, the 
feature is labeled as an insignificant.  
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Figure 5 Comparisons of parametric density functions by cluster. 

Bayesian Framework for Vehicle Matching and Filtering 

This study applied an extended form of a naïve Bayes classifier.  As a family of probabilistic 
classifier in machine learning techniques, a naïve Bayes classifier is a supervise learning that 
requires labeled training data.  In other words, a pair of example should consist of input 
attributes and output value.  In this study, vehicle pairs (i.e., examples) of match and non-
match (i.e., outputs) can be distinguished by vehicle attributes (i.e., feature vectors) by a 
mapping function of Bayesian classifier.   

The goal of Bayesian framework is to identify a matching vehicle at upstream location for every 
target vehicle detected at downstream location.  The first model, defined as a vehicle matching 
model, determines the best candidate among multiple candidates for all target trucks. Only 
matching pairs’ distributions are used in this process as the candidate with the highest 
matching probability (𝑝(µ𝑖𝑗)) is chosen as the best candidate.  However, to consider non-
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passing trucks, there is a need for the second model, filtering model, to filter out vehicles that 
did not pass both of upstream and downstream detector locations.  The filtering model 
therefore compares the matching (𝑝(𝜃𝑖𝑗 = 1)) and non-matching (𝑝(𝜃𝑖𝑗 = 0)) probabilities for 

every potential matching pairs obtained from the first model.  Simply, the matching probability 
is higher than 0.5 (or non-matching probability), the matching outcome is declared as a match.  
The final step examines duplicates in matching pairs, and if the duplicate candidate is identified, 
the target re-searches its best matching vehicle (refer back to Figure 1).  

Vehicle matching model 

𝑝(µ𝑖𝑗 | 𝑉𝑖𝑗
1 , 𝑉𝑖𝑗

2 … 𝑉𝑖𝑗
𝐿)   ∝   

   𝛼𝑙∙𝛱𝑙=1
𝐿  𝑝(µ𝑖𝑗)

𝛼𝑙∙𝛱𝑙=1
𝐿  𝑝(µ𝑖𝑗)

  , where 𝛼𝑙 represents a feature label (eq. 6) 

Vehicle filtering model 

𝑝(𝜃𝑖𝑗 = 1 | 𝑉𝑖𝑗
1 , 𝑉𝑖𝑗

2 … 𝑉𝑖𝑗
𝐿)  =  

  𝛱𝑙=1
𝐿  𝛼𝑙∙𝑝(𝜃𝑖𝑗=1)

𝑝(𝜃𝑖𝑗=1)∙  𝛱𝑙=1
𝐿 𝛼𝑙∙ 𝑝(𝜃𝑖𝑗=1)+𝑝(𝜃𝑖𝑗=0)∙  𝛱𝑙=1

𝐿  𝛼𝑙∙ 𝑝(𝜃𝑖𝑗=0)  
 (eq. 7) 

 

𝑝(𝜃𝑖𝑗 = 0 | 𝑉𝑖𝑗
1 , 𝑉𝑖𝑗

2 … 𝑉𝑖𝑗
𝐿) =   1 −  𝑝(𝜃𝑖𝑗 = 1 | 𝑉𝑖𝑗

1 , 𝑉𝑖𝑗
2 … 𝑉𝑖𝑗

𝐿)    (eq. 8) 

Data 
The tracking is implemented on a major truck network containing two upstream locations and 
one downstream location as shown in Figure 6. The distances from each upstream to 
downstream ILDs are 5.2 and 5.5 miles, spanning five major freeway intersections and ramps.  
Signature data from the northbound truck lanes were collected from the upstream #1 (U1) and 
the downstream sites (D), and from the westbound truck lanes at the upstream #2 site (U2) on 
July 7th, 2016.  A total of 424 vehicles were collected at the downstream locations where 58 
percent of trucks are multi-unit trucks (Table 1).   There were 284 trucks observed at both up- 
and down-stream location in this network, referred to as common vehicles, which is 67 percent 
of the total vehicle captured at downstream location.  Inductive signature data and side-fire 
images for trucks were collected at these sites for visually validating the model, which were 
manually linked through a groundtruth data processing.  
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Site Location Distance Site Description Collection Dates 

Camp Pendleton (I5) to Carlsbad (I5) 5.2 miles D-U1  July 7th 2016  

11:20AM – 12:40PM Camp Pendleton (I5) to Tri-City (SR 78) 5.5 miles D-U2 

Figure 6 Data collection site. 

Table 1 Data Collected for Network-wide Tracking 

Dataset 
# of trucks 
collected at 
downstream 

% of Multi-unit 
at downstream 

# of trucks 
collected at 
upstream 

% of Multi-
unit at 
upstream  

# 
common 
vehicles 

% of common 
vehicle from the 
total vehicle 
detected at 
downstream 

D-U1 

424 58% 

421 54% 222 

67% D-U2 118 49% 62 

Total 539 53% 284 

Legend

Detection sites

Major intersections  and ramps

Camp Pendleton

ML 2

ML 4

ML 3

ML 1

NB

Carlsbad

ML 2

ML 4

ML 3

ML 1

NB

Tri-City

ML 2

ML 4

ML 3

ML 1

WB

To NB I-5 

D

U2

U1

Camp Pendleton (I-5)

Tri-City (SR-78)

Carlsbad (I-5)

To SB I-5
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Results 
Tracking outcomes are results of a binary classification problem whether the declared pair is a 
match or a non-match.  To evaluate classification problems, a confusion matrix is generally used 
to show a number of actual and predicted outcomes in correct and incorrect consequences.   In 
this study, actual and predicted match and non-match vehicles are presented in the table for 
Multi- and Single-unit, respectively (see Table 2).  Performance measures are also introduced to 
evaluate the classification problem. First, an accuracy considers both correct match and non-
match pairs across the total pairs.  However, the accuracy is known to show biased results 
when a problem has a large imbalance in two outcomes because the problem tends to send 
more outcomes to majority case to achieve a high performance.  For example, if majority 
vehicles in a tracking network are not common vehicles, significantly more non-matches would 
be expected than matches.  If the algorithm successfully classifies non-match, high accuracy is 
obtained regardless of the match results, although more attention should be given to the match 
results.  To overcome this problem and show trade-offs of the actual and predicted correct 
outcomes, especially for a desired outcome (i.e., match), additional measures, recall and 
precision, are considered.  The precision is defined as the number of positive (i.e., matching) 
prediction divided by the total number of positive class predicted while the recall is the number 
of positive predictions divided by the number of positive class actual values. In other words, 
precision indicates a measure of exactness, showing how many actual matches are predicted.  
The recall is a measure of completeness because it shows how many of predicted matches are 
indeed correct. Since the precision and recall contains different information in match cases, a 
performance measure that includes a balanced outcome between the precision and recall is 
introduced as a F1 score.   

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   (eq. 9)  

Multi-unit showed 91 percent of F1 score while Single-unit showed 60 percent.  In Multi-unit, 
most of vehicles were common vehicles that were observed both up- and down-stream 
locations and the matching and filtering algorithms successfully declared them as match.  
Compared to the accuracy, recall and precision show better performance in Multi-unit, which 
indicate the algorithm performs better in identifying match pairs than filtering non-common 
vehicles. However, the filtering algorithm tends to keep non-common Single-unit trucks as 
match. Although 54 percent of Single-unit vehicles were not common vehicles, only half of 
them were filtered as non-matches. This is because the Single-unit has less variety in its truck 
configuration, which makes it challenging distinguishing vehicles in both matching and filtering 
processes. 
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Table 2 Confusion Matrix and Performance Measure 

Multi-unit 

Predicted 

Single-unit 

Predicted 

Match 
Non-
match Total Match 

Non-
match Total 

Actu
al 

Match 182 19 201 

Actual 

Match 56 27 83 

Non-
match 

19 25 44 
Non-match 

48 48 96 

Total 201 44 245 Total 104 75 179 

Performance 
Measures 

Accuracy= (182+25)/245 = 
84% 

Recall = 91% 

Precision = 91% 

F1 score = 91% 

Performance Measures 

Accuracy= 56% 

Recall = 67% 

Precision = 54% 

F1 score = 60% 

 

Application to Truck Monitoring with Route Choice Behavior 

by Truck Types 
Since the Bayesian model tracks vehicles among multiple detection locations, trucks can be 
monitored with their route choice over a large network.  As a use-case, truck monitoring is 
implemented in a larger network with an integration of the recently developed truck body 
classification model (21 Hernandez et al., 2016). This case study chose six ILD locations located 
on I-210, I-10 and SR-60 in Southern California.  These corridors are the major routes 
connecting San Bernardino county and Los Angeles county as shown in Figure 7.  These three 
highways run parallel and serve as alternative routes for each other.  Signature data and body 
configuration model estimates were collected on August 3rd, 2016 from UCI-TAMS (26).  This 
application only considers Multi-unit trucks in the tracking process.  It should be noted that the 
truck monitoring case study shows an application of network-wide tracking and the tracking 
results presented in this section were the estimates from the tracking model and not manually 
confirmed with visual groundtruth process. Although the truck tracking results are not validated 
with visual confirmation of their license plates, this study is expected to show valuable insights 
in truck route choice and travel patterns in a large and complex network system.  
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Site id Site Description Site Location (highway) 
Vehicle 

Observed 

Multi-unit  

Estimated 

U1  Upstream Site #1 Azusa (I-210) 46,747 8,657 

U2  Upstream Site #2 West Covina (I-10) 33,086 3,886 

U3  Upstream Site #3 La Puente (SR-60) 48,714 11,183 

D1  Downstream Site #1 Claremont (I-210) 29,696 4,097 

D2  Downstream Site #2 Montclair (I-10) 54,342 9,394 

D3  Downstream Site #3 Chino (SR-60) 53,970 8,416 

Figure 7 Site map for network-wide truck monitoring. 

Figure 8(a) presents route choice patterns by upstream location.   The truck corridors were 
simplified and the thickness of the line indicates the relative flows between sites in this figure.  
For example, trucks observed at U1 passed to the downstream locations in descending order of 
D3, D2, and D1.  Although U1 and D1 are located on the same highway, the least proportion of 
trucks passed through the both locations.  Overall, the routes mostly used are from I-210 (U1) 
to CA-60 (D3), and from CA-60 (U3) to I-10 (D2).  Figure 8(b) compares the truck body 
configuration by routes by integrating the tracking outcomes to the truck body classifications 
(16). A total of 9 combinations of upstream-downstream sites are presented with six body 
configurations.  The most common body type is enclosed van followed by either 40ft port 
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container or refrigerated unit of enclosed van.   Specifically, a large amount of port container 
trucks was travelled to D3 (SR-60) from all the upstream locations, which could be because D3 
is closely located to two transcontinental rail terminals.   

 

(a) Route choice patterns in total trucks 

 

(b) Route choice patterns by truck body configurations 

Figure 8 Route choice patterns (a) in total trucks and (b) by truck body configurations. 
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Conclusion 
This study developed a network-wide tracking model using ILD waveform signatures of trucks 
based on a Bayesian framework. As the tracking algorithm solely utilizes signature features for 
vehicle matching, the tracking could be implemented for temporally continuous tracking along 
any major truck network. However, as ILD signature profiles highly depend on the ferrous shape 
of vehicles, trucks with similar body configurations inevitably provide similar signature shapes. 
Therefore, this study applied extensive signature processing steps, including signature 
transformation and clustering approaches, to better identify vehicles and to increases tracking 
accuracy. Specifically, SOM was used to group signatures by their overall shapes, which allowed 
the signature features to become more salient and distinguishable by individual vehicles.   

Tracking results showed 91 and 67 percent correct matching rates for multi-unit and single-unit 
trucks.  Specifically, multi-units showed high performance in both exactness and completeness 
in finding matching pairs. The tracking model implemented a truck monitoring application over 
a complex network with six detector locations at port adjacent cities in Southern California.   
Although six sites were fairly closely co-located, distinct travel patterns were monitored by 
truck type, which showed the ability of the tracking model to analyze temporal and seasonal 
variations of truck activities by affiliated industry. 
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